Numerical Studies of the Quantum Adiabatic Algorithm
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولA Numerical Study of the Performance of a Quantum Adiabatic Evolution Algorithm for Satisfiability
Quantum computation by adiabatic evolution, as described in quant-ph/0001106, will solve satisfiability problems if the running time is long enough. In certain special cases (that are classically easy) we know that the quantum algorithm requires a running time that grows as a polynomial in the number of bits. In this paper we present numerical results on randomly generated instances of an NP-co...
متن کاملA Universal Adiabatic Quantum Query Algorithm
Quantum query complexity is known to be characterized by the so-called quantum adversary bound. While this result has been proved in the standard discretetime model of quantum computation, it also holds for continuous-time (or Hamiltonianbased) quantum computation, due to a known equivalence between these two query complexity models. In this work, we revisit this result by providing a direct pr...
متن کاملAdiabatic quantum search algorithm for structured problems
The study of quantum computation has been motivated by the hope of finding efficient quantum algorithms for solving classically hard problems. In this context, quantum algorithms by local adiabatic evolution have been shown to solve an unstructured search problem with a quadratic speedup over a classical search, just as Grover’s algorithm. In this paper, we study how the structure of the search...
متن کاملAn optimal adiabatic quantum query algorithm
The quantum adversary method was originally introduced by Ambainis [Amb02] for lower-bounding the quantum query complexity Q(f) of a function f . It is based on optimizing a matrix Γ assigning weights to pairs of inputs. It was later shown by Høyer et al. [HLŠ07] that using negative weights also provides a lower bound, which is stronger for some functions. A series of works [RŠ12, Rei09, Rei11]...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics: Conference Series
سال: 2015
ISSN: 1742-6588,1742-6596
DOI: 10.1088/1742-6596/640/1/012038